欢迎光临贝博app体育官网

联系电话:0577-62891398
产品详情


Notice: Undefined variable: a in /www/wwwroot/hbmtl.com/cache/template/e607/bb75/792d6f2540e637786f8e.html on line 61

Notice: Trying to access array offset on value of type null in /www/wwwroot/hbmtl.com/cache/template/e607/bb75/792d6f2540e637786f8e.html on line 61

首页 > 贝博app体育官网 > 美式变电站

200Ah/110V柜式直流电源

基于无源超高频UHF RFID应答器芯片的射频电路设计

来源:美式变电站    发布时间:2024-07-07 12:11:21

产品详情

  摘要:RFID常用工作频率包括低频125kHz、134.2kHz.高频13.56MHz,超高频860~930MHz,微波2.45GHz,5.8GHz等。因为低频125kHz、134.2kHz,高频13.56MHz系统以线圈作为天线,采用电感祸合的方式,其工作距离较近,一般不超过1.2m,带宽在欧洲及别的地方限制为几千赫兹。但超高频(860~93Uh1Hz)和微波(2.45GHz,5.8GHz)能够给大家提供更远的工作距离,更高的数据速率,更小的天线尺寸,因此成为RFID的热点研究领域。

  射频识别(radio frequency idenlificaTInn,RFID)是20世纪90年代兴起的一种自动识别技术。RFID技术具有多种条形码技术所不具备的优点,应用场景范围十分广泛,可应用于第二代公民身份*、城市一卡通、金融交易、供应链管理、电刊文费(ETC)、门禁控制、机场行李管理、公共运输、集装箱识别、畜牧管理等,因此,掌握制造RFID芯片的技术变得很重要。目前,日渐增长的应用需求对RFID芯片提出了更高的要求,要求其容量更大,成本更低,体积更小,数据速率更高。根据这样的一种情况,本文提出了一种长距离、低功耗的无源超高频UHF RFID应答器芯片射频电路。

  RFID常用工作频率包括低频125kHz、134.2kHz.高频13.56MHz,超高频860~930MHz,微波2.45GHz,5.8GHz等。因为低频125kHz、134.2kHz,高频13.56MHz系统以线圈作为天线,采用电感祸合的方式,其工作距离较近,一般不超过1.2m,带宽在欧洲及别的地方限制为几千赫兹。但超高频(860~93Uh1Hz)和微波(2.45GHz,5.8GHz)能够给大家提供更远的工作距离,更高的数据速率,更小的天线尺寸,因此成为RFID的热点研究领域。

  本论文提出的射频电路芯片采用支持肖特基二极管和电可擦除可编程只读存储器(EEPROM)的Chartered 0.35m 2P4M CM0S工艺进行流片。肖特基二极管具有较低的串联电阻和正向电压,在将接收到的射频输入信号能量转换为直流电源供电时,可提供较高的转换效率,以此来降低功耗。在有效全向辐射功率(EIRP)为4W(36dBm)且天线dB的情况下,该射频电路芯片工作在915MHz,其读取距离大于3m,工作电流小于8A。

  图1是UHF RF1D应答器芯片系统图,其主要包含了射频电路、逻辑控制电路和EEPROM。其中,射频电路部分又可大致分为以下几个主要电路模块:本地振荡器和时钟产生电路、上电复位电路、电压参考源、匹配网络和反向散射电路、整流器、稳压器以及调幅(AM)解调器等。其中除天线外无外接元器件,天线部分采用偶极子结构,并通过匹配网络与整流器的输入阻抗进行匹配,作为整个芯片的唯一能量来源。其等效模型如图2所示。偶极子天线阻抗的实部由Rra和Rloss,两部分所组成,其中Rra为偶极子天线的辐射阻抗,是偶极子天线,它表征天线对外辐射电磁波的能力;Rloss为制作天线所用金属带来的欧姆电阻,一般只产生热量。天线阻抗的虚部X一般为正值,是因为天线一般来说总是对外呈现电感性,此等效电感的大小一般取决于天线的拓扑结构和基板材质。整流器将耦合到的射频输入信号功率转换成芯片所需的直流电压。稳压器则将该直流电压稳定在一定的电平上,并限制该直流电压的幅度以保护芯片不会因电压过高而击穿。AM解调器用于从接收到的载波信号中提取相应的数据信号。反向散射电路通过可变电容来改变射频电路的阻抗,从而将应答器数据发送到RFID询问器或读卡器。上电复位电路用于产生整个芯片的复位信号。与13.56MHz的高频(HF)应答器不同,915MHz的UHF应答器不能从载波中分频得到本地时钟,而只可以通过内建一个低功耗的本地振荡器为数字逻辑电路部分提供时钟。所有这些电路模块将在下文中逐一详细说明。

  本论文采用肖特基二极管组成的Dickson电荷泵作为整流器电路,其电路原理图如图3所示。这是因为肖特基二极管具有较低的串联电阻和结电容,在将接收到的射频输入信号能量转换为直流电源供电时能够给大家提供较高的转换效率,以此来降低功耗。全部肖特基二极管均通过poly-poly电容连接在一起,其中纵向电容在输入电压Vin的负半周期进行充电、储能,而横向电容在Vin的正半周期进行充电、储能,由此产生直流高电压,其产生的电压为:

  图4是稳压器的电路图。该电路是要将整流器输出的直流电压稳定在一定的电平上,并为整个应答器芯片提供稳定的工作电压,来保证不会由于应答器芯片物理位置变化引起直流电压幅度的改变,避免可能会引起的芯片击穿,从而起到保护应答器芯片的作用。该电路采取了自偏置的Cascnde结构,之所以选择该电路结构是因为Cascnde结构存在共栅管的隔离作用,使其具有非常好的抑制电源波动的能力,来提升电源抑制比(PSRR),保证两个支路电流的基本稳定。其中Q1与Q2的面积比为1∶8。此外,与一般的HF RFID应答器不同,我们在设计中采用了具有低压启动电路的低功耗电压参考源,以降低芯片的整体功耗

相关产品